
Raspberry
SPI and I2C with

Python
Hans-Petter Halvorsen

https://www.halvorsen.blog

Free Textbook with lots of Practical Examples

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

Additional Python Resources

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

• Raspberry Pi GPIO
• GPIO with Python
• SPI with Python Examples
– ADC
– TMP36

• ThingSpeak Examples
• I2C with Python Examples
– TC74 Temperature Sensor
– BME280 Temperature, Pressure and Humidity Sensor

Contents

Raspberry Pi

https://www.raspberrypi.org

Raspberry Pi is a tiny (about 9x6cm), low-cost ($35+),
single-board computer that supports embedded Linux
operating systems

The recommended
Operating System is called
Raspberry Pi OS (Linux
based)

https://www.raspberrypi.org/

Raspberry Pi

SD Card
(the Back)

GPIO Pins

micro HDMI x 2Power Supply (USB C)

Ethernet

USB A x 4
Camera

Connector

Raspberry PI GPIO

Hans-Petter Halvorsen

https://www.halvorsen.blog

GPIO

A powerful feature of the Raspberry Pi is the GPIO (general-purpose input/output) pins.
The Raspberry Pi has a 40-pin GPIO header as seen in the image

The GPIO pins are Digital Pins which are either True
(+3.3V) or False (0V). These can be used to turn on/off
LEDs, etc.
The Digital Pins can be either Output or Input.
In addition, some of the pins also offer some other
Features:
• PWM (Pulse Width Modulation)
Digital Buses (for reading data from Sensors, etc.):
• SPI
• I2C

GPIO Features

GP
IO

GPIO with Python

Hans-Petter Halvorsen

https://www.halvorsen.blog

• The GPIO Zero Python Library can be used to communicate
with GPIO Pins

• The GPIO Zero Python Library comes preinstalled with the
Raspberry Pi OS (so no additional installation is necessary)

Resources:
• https://www.raspberrypi.org/documentation/usage/gpio/p

ython/
• https://pypi.org/project/gpiozero/
• https://gpiozero.readthedocs.io/en/stable/
• https://gpiozero.readthedocs.io/en/stable/recipes.html

GPIO Zero

https://www.raspberrypi.org/documentation/usage/gpio/python/
https://pypi.org/project/gpiozero/
https://gpiozero.readthedocs.io/en/stable/
https://gpiozero.readthedocs.io/en/stable/recipes.html

RPi.GPIO
• Rpi.GPIO is a module controlling the GPIO pins on the

Raspberry Pi
• RPi.GPIO is a more “low-level“ Python Library than

GPIO Zero. Actually, GPIO Zero is using RPi.GPIO
• The RPi.GPIO Python Library comes preinstalled with

the Raspberry Pi OS (so no additional installation is
necessary)

https://pypi.org/project/RPi.GPIO/

https://pypi.org/project/RPi.GPIO/

Digital Bus Interfaces
• SPI
• I2C

• These are synchronous serial interfaces, which
means it relies on a shared clock signal to
synchronize data transfer between devices

SPI vs. I2C
SPI
• 4-Wire Protocol
• SPI supports full-duplex. Data can be

sent and received at the same time
• Higher data transfer rate than I2C
• Complex wiring if more than one Slave

I2C
• 2-Wire Protocol
• SPI supports only half-duplex. Data

cannot be sent and received at the
same time

• Lower data transfer rate than SPI
• Multiple Slaves are easier

SPI

Hans-Petter Halvorsen

https://www.halvorsen.blog

Serial Peripheral Interface (SPI)

SPI
• Serial Peripheral Interface (SPI)
• 4–Wire Protocol (SCLK, CE, MOSI, MISO)
• SPI is an interface to communicate with

different types of electronic components
like Sensors, Analog to Digital Converts
(ADC), etc. that supports the SPI interface

• Thousands of different Components and
Sensors supports the SPI interface

https://www.raspberrypi.org/documentation/hardware/raspberrypi/spi/

https://www.raspberrypi.org/documentation/hardware/raspberrypi/spi/

SPI

SCLK
MOSI
MISO

CE

SPI Master SPI Slave

SCLK
MOSI
MISO
CE

SPI devices communicate in full duplex mode using a master-slave architecture with a
single master

Raspberry Pi SPI ADC, SPI Sensor, etc.

The SPI bus specifies four logic signals:
• SCLK: Serial Clock (output from master)
• MOSI: Master Out Slave In (data output from master)
• MISO: Master In Slave Out (data output from slave)
• CE (often also called SS - Slave Select): Chip Select (often active low, output from master)

Access SPI on Raspberry Pi
You need to Enable SPI on the Raspberry Pi

SPI Wiring on Raspberry Pi
GPIO 40 pins Connector

ADC

Hans-Petter Halvorsen

https://www.halvorsen.blog

Analog to Digital Converter

ADC

https://en.wikipedia.org/wiki/Analog-to-digital_converter

• The Raspberry Pi has only Digital pins on the
GPIO connector

• If you want to use an Analog electric
component or an Analog Sensor together with
Raspberry Pi, you need to connect it through
an external ADC chip

• ADC – Analog to Digital Converter

https://en.wikipedia.org/wiki/Analog-to-digital_converter

MCP3002 ADC chip
The MCP3002 is a 10-bit analog to digital converter with 2 channels (0-1).

https://learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-with-the-
raspberry-pi/experiment-3-spi-and-analog-input

http://ww1.microchip.com/downloads/en/DeviceDoc/21294E.pdf

The MCP3002 uses a SPI Interface

https://learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-with-the-raspberry-pi/experiment-3-spi-and-analog-input
http://ww1.microchip.com/downloads/en/DeviceDoc/21294E.pdf

Wiring

https://sites.google.com/a/joekamphaus.net/raspberry-pi-spi-interface-to-mcp3002/

https://sites.google.com/a/joekamphaus.net/raspberry-pi-spi-interface-to-mcp3002/

Wiring
Ra

sp
be

rr
y

Pi
 G

PI
O

 P
in

s
+5V (Pin 2)

SCLK GPIO 11 (Pin 23)
GND(Pin 25)

MISO GPIO 9 (Pin 21)
MOSI GPIO 10 (Pin 19)

CS GPIO 8 (Pin 24)

GPIO Zero and MCP3002
gpiozero.MCP3002(channel=0, differential=False, max_voltage=3.3, **spi_args)

channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the MCP3004/3204/3302
have 4 channels (0-3), the MCP3002/3202 have 2 channels (0-1), and the MCP3001/3201/3301 only have 1 channel.

differential
If True, the device is operated in differential mode. In this mode one channel (specified by the channel attribute) is
read relative to the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is used as the relative base value (for example,
when using an MCP3008 in differential mode, channel 0 is read relative to channel 1).

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for certain devices operating
in differential mode).

https://gpiozero.readthedocs.io/en/stable/api_spi.html

https://gpiozero.readthedocs.io/en/stable/api_spi.html

Read Data from ADC

from gpiozero import MCP3002
from time import sleep

adc = MCP3002(channel=0, differential=True)

N = 20

for x in range(N):
adcdata = adc.value #Value between 0 and 1
#print(adcdata)
voltvalue = adcdata * 5 #Value between 0 and 5V
print(voltvalue)
sleep(1)

For test purpose we start by wiring a 1.5V Battery to the CH0 (+) and CH1(-) pins on the ADC

1.5V Battery

ADC

Note! WE have set differential=True (meaning CH0 is “+“ and CH1 is “-“)

TMP36

Hans-Petter Halvorsen

https://www.halvorsen.blog

Temperature Sensor

TMP36 Temperature Sensor

https://learn.adafruit.com/tmp36-temperature-sensor

A Temperature sensor like TM36 use a
solid-state technique to determine the
temperature.

They use the fact as temperature
increases, the voltage across a diode
increases at a known rate.

https://learn.adafruit.com/tmp36-temperature-sensor

TMP36 Temperature Sensor
Convert form Voltage (V) to degrees Celsius

From the Datasheet we have:

(𝑥!, 𝑦!) = (0.75𝑉, 25°𝐶)
(𝑥", 𝑦") = (1𝑉, 50°𝐶)

There is a linear relationship between
Voltage and degrees Celsius:

𝑦 = 𝑎𝑥 + 𝑏

We can find a and b using the following
known formula:

𝑦 − 𝑦! =
𝑦" − 𝑦!
𝑥" − 𝑥!

(𝑥 − 𝑥!)

This gives:

𝑦 − 25 =
50 − 25
1 − 0.75 (𝑥 − 0.75)

Then we get the following formula:
𝑦 = 100𝑥 − 50

Measure temperature with an ADC
from gpiozero import MCP3002
from time import sleep

adc = MCP3002(channel=0, differential=False)

N = 10

for x in range(N):
adcdata = adc.value #Value between 0 and 1
#print(adcdata)

voltvalue = adcdata * 5 #Value between 0V and 5V
#print(voltvalue)

tempC = 100*voltvalue-50 #Temperature in Celsius
tempc = round(tempC,1)
print(tempC)

sleep(1)

Wire a TMP36 temperature
sensor to the first channel of an
MCP3002 analog to digital
converter and the other pins to
+5V and GND

TMP36 Temperature Sensor

ThingSpeak

Hans-Petter Halvorsen

https://www.halvorsen.blog

ThingSpeak
• ThingSpeak is an IoT analytics platform service that lets you collect and

store sensor data in the cloud and develop Internet of Things
applications.

• The ThingSpeak service also lets you perform online analysis and act on
your data. Sensor data can be sent to ThingSpeak from any hardware
that can communicate using a REST API

• ThingSpeak has a Web Service (REST API) that lets you collect and store
sensor data in the cloud and develop Internet of Things applications (it
also has MQTT API).

• https://thingspeak.com
• Python Library for ThingSpeak: https://pypi.org/project/thingspeak/

https://thingspeak.com/
https://pypi.org/project/thingspeak/

ThingSpeak

ThingSpeak Write
import thingspeak
import time

channel_id = xxxxxx
write_key = "xxxxxxxxxxxxxxxxx"

channel = thingspeak.Channel(id=channel_id, api_key=write_key)

N = 10
for x in range(N):

temperature = 24
response = channel.update({'field1': temperature})
time.sleep(15)

A Free ThingSpeak Channel can
only be updated every 15 sechttps://thingspeak.readthedocs.io/en/latest/api.html

https://thingspeak.readthedocs.io/en/latest/api.html

W
rit

e
TM

P3
6

Da
ta

import thingspeak
import time
from gpiozero import MCP3002

adc = MCP3002(channel=0, differential=False)

channel_id = xxxxxxx
write_key = ”xxxxxxxxxxxxxxxxxx”

channel = thingspeak.Channel(id=channel_id, api_key=write_key)

N = 10
for x in range(N):

#Get Sensor Data
adcdata = adc.value #Scaled Value between 0 and 1
voltvalue = adcdata * 5 # Value between 0V and 5V
tempC = 100*voltvalue-50 # Temperature in Celsius
tempC = round(tempC,1)
print(tempC)

#Write to ThingSpeak
response = channel.update({'field1': tempC})
time.sleep(15)

A Free ThingSpeak Channel can
only be updated every 15 sec

Write TMP36 Data
Here we see the Temperature Data in ThingSpeak:

ThingSpeak Read
import thingspeak

channel_id = xxxxxx
read_key = ”xxxxxxxxxxxxxxxx"

channel = thingspeak.Channel(id=channel_id, api_key=read_key)

#data = channel.get({})
data = channel.get_field({”field1"})

print(data)

https://thingspeak.readthedocs.io/en/latest/api.html

https://thingspeak.readthedocs.io/en/latest/api.html

I2C

Hans-Petter Halvorsen

https://www.halvorsen.blog

Inter Integrated Circuit

I2C
• I2C is a multi-drop bus
• 2-Wire Protocol (SCL + SDA)
• Multiple devices can be connected to the I2C

pins on the Raspberry Pi
• Each device has its own unique I2C address

I2C

SDA
SCLI2C Master

I2C Slave

Raspberry Pi

ADC, DAC, Sensor, etc. with I2C Interface

Multiple devices can be connected to the I2C pins on the Raspberry Pi
Master – Device that generates the clock and initiates communication with slaves
Slave – Device that receives the clock and responds when addressed by the master.

I2C Slave

…

SDA
SCL

SDA
SCL

Access I2C on Raspberry Pi
You need to Enable I2C on the Raspberry Pi

I2C Wiring on Raspberry Pi
GPIO 40 pins Connector

Note! The I2C pins include a fixed 1.8 kΩ pull-up resistor to 3.3v.

Detecting I2C Devices

sudo i2cdetect -y 1

sudo apt-get install -y i2c-tools

Install I2C Tools on the Raspberry Pi:

Detecting and Find the Address of the I2C Device using the i2cdetect command:

We can read and write its registers using i2cget, i2cset and i2cdump

sudo i2cget -y 1 0x48

Example:

Device Address

GPIO Python Libraries
• GPIO Zero
– https://pypi.org/project/gpiozero/

• RPi.GPIO
– https://pypi.org/project/RPi.GPIO/

• smbus (used for I2C communication)

https://pypi.org/project/gpiozero/
https://pypi.org/project/RPi.GPIO/

smbus Python Library
You can access I2C devices from Python using the smbus library:
import smbus
DEVICE_BUS = 1
DEVICE_ADDR = 0x15
bus = smbus.SMBus(DEVICE_BUS)

command = 0x00
value = 0x01
bus.write_byte_data(DEVICE_ADDR, command, value)

data = bus.read_byte_data(DEVICE_ADDR, command)

https://pinout.xyz/pinout/i2c

SMBus (System Management Bus) is a subset from the I2C protocol

https://raspberry-projects.com/pi/programming-in-python/i2c-programming-in-python/using-the-i2c-interface-2

https://pinout.xyz/pinout/i2c
https://raspberry-projects.com/pi/programming-in-python/i2c-programming-in-python/using-the-i2c-interface-2

TC74 Temperature Sensor
TC74A0-5.0VAT

Datasheet: https://ww1.microchip.com/downloads/en/DeviceDoc/21462D.pdf

SMBus/I2C Interface

• The TC74 acquires and converts
temperature information from its onboard
solid-state sensor with a resolution of
±1°C.

• It stores the data in an internal register
which is then read through the serial port.

• The system interface is a slave SMBus/I2C
port, through which temperature data can
be read at any time.

https://ww1.microchip.com/downloads/en/DeviceDoc/21462D.pdf

TC74 Wiring
Ra

sp
be

rr
y

Pi
 G

PI
O

 P
in

s

SDA (GPIO2) Pin3
SCL (GPIO3) Pin5

+5V Pin 2

GND Pin 6

SDA - Serial Data – Bidirectional
SCLK - Serial Clock Input
VDD – Power Supply Input
GND – Ground
NC - Not in use (Not Connected)

TC74 Testing
sudo i2cdetect -y 1

Running the following in the Terminal:

This gives the TC74 address 0x48

sudo i2cget -y 1 0x48

Running the following in the Terminal:

This gives the values:
0x16 -> 22
0x17 -> 23
0x18 -> 24
0x19 -> 25

(while holding my
fingertips on the sensor)

TC74 Python Code Example
import smbus

channel = 1
address = 0x48

bus = smbus.SMBus(channel)

data = bus.read_byte_data(address, 0)
print(data)

data = bus.read_byte(address)
print(data)

Or just:

This gives the Temperature Value in Degrees Celsius, e.g., 22

This code shows the basic
reading of the Sensor Data.

You can add a For Loop or a
While Loop for reading
Sensor Data at specific
intervals.

You can plot the Data using
matplotlib, save data to a File
or send data to a cloud
service like ThingSpeak, etc.

BME280
• BME280 is a Digital Humidity, Pressure and

Temperature Sensor from Bosch
• The sensor provides both SPI and I2C interfaces
• Adafruit, Grove Seeed, SparkFun, etc. have

breakout board bords for easy connection to
Arduino, Raspberry Pi, etc.

• The Price for these breakout boards are $1-20
depending on where you buy these (ebay,
Adafruit, Sparkfun, …)

BME280
• Humidity ±3% accuracy
• Barometric pressure ±1 hPa absolute accuraccy
• Temperature ±1.0°C accuracy
Datasheet:
https://www.bosch-sensortec.com/products/environmental-
sensors/humidity-sensors-bme280/

https://www.bosch-sensortec.com/products/environmental-sensors/humidity-sensors-bme280/

BME280

The size is about 2.5x2.5mm

So, to connect it to Raspberry Pi, you typically
will use a breakout board

Adafruit

Grove Seeed

SparkFun

BME280 Python Libraries
There exists lots of BME280 libraries you can use for your
BME280 Sensor

RPi.bme280:
https://pypi.org/project/RPi.bme280/

Here you find another Library:
https://www.raspberrypi-spy.co.uk/2016/07/using-bme280-i2c-
temperature-pressure-sensor-in-python/

I have tested both these, and they are working fine.

https://pypi.org/project/RPi.bme280/
https://www.raspberrypi-spy.co.uk/2016/07/using-bme280-i2c-temperature-pressure-sensor-in-python/

BME280 Wiring
Ra

sp
be

rr
y

Pi
 G

PI
O

 P
in

s

SDA (GPIO2) Pin3
SCL (GPIO3) Pin5

+5V Pin 2

GND Pin 6

SDA - Serial Data – Bidirectional
SCLK - Serial Clock Input
VDD – Power Supply Input
GND – Ground
NC - Not in use (Not Connected)

SDA
GND
SCLK
VCC

sudo i2cdetect -y 1

Running the following in the Terminal:

This gives the TC74 address 0x76

BME280 Example
import smbus2
import bme280

port = 1
address = 0x76
bus = smbus2.SMBus(port)

calibration_params = bme280.load_calibration_params(bus, address)

data = bme280.sample(bus, address, calibration_params)

print(data)

Or Getting specific data:
print(data.id)
print(data.timestamp)
print(data.temperature)
print(data.pressure)
print(data.humidity) https://pypi.org/project/RPi.bme280/

https://pypi.org/project/RPi.bme280/

Additional Python Resources

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

